44 research outputs found

    Heat treatment procedure of the Aluminium 6061-T651 for the Ariel Telescope mirrors

    Get PDF
    The Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) is the M4 mission adopted by ESA’s ”Cosmic Vision” program. Its launch is scheduled for 2029. The purpose of the mission is the study of exoplanetary atmospheres on a target of ∼ 1000 exoplanets. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope. The light is directed towards a set of photometers and spectrometers with wavebands between 0.5 and 7.8 µm and operating at cryogenic temperatures. The Ariel Space Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1· 0.7 m, followed by a hyperbolic secondary, a parabolic collimating tertiary and a flat-folding mirror directing the output beam parallel to the optical bench; all in bare aluminium. The choice of bare aluminium for the realization of the mirrors is dictated by several factors: maximizing the heat exchange, reducing the costs of materials and technological advancement. To date, an aluminium mirror the size of Ariel’s primary has never been made. The greatest challenge is finding a heat treatment procedure that stabilizes the aluminium, particularly the Al6061T651 Laminated alloy. This paper describes the study and testing of the heat treatment procedure developed on aluminium samples of different sizes (from 50mm to 150mm diameter), on 0.7m diameter mirror, and discusses future steps

    In-flight calibration system of imaging x-ray polarimetry explorer

    Get PDF
    The NASA/ASI Imaging X-ray Polarimetry Explorer, which will be launched in 2021, will be the first instrument to perform spatially resolved X-ray polarimetry on several astronomical sources in the 2-8 keV energy band. These measurements are made possible owing to the use of a gas pixel detector (GPD) at the focus of three X-ray telescopes. The GPD allows simultaneous measurements of the interaction point, energy, arrival time, and polarization angle of detected X-ray photons. The increase in sensitivity, achieved 40 years ago, for imaging and spectroscopy with the Einstein satellite will thus be extended to X-ray polarimetry for the first time. The characteristics of gas multiplication detectors are subject to changes over time. Because the GPD is a novel instrument, it is particularly important to verify its performance and stability during its mission lifetime. For this purpose, the spacecraft hosts a filter and calibration set (FCS), which includes both polarized and unpolarized calibration sources for performing in-flight calibration of the instruments. In this study, we present the design of the flight models of the FCS and the first measurements obtained using silicon drift detectors and CCD cameras, as well as those obtained in thermal vacuum with the flight units of the GPD. We show that the calibration sources successfully assess and verify the functionality of the GPD and validate its scientific results in orbit; this improves our knowledge of the behavior of these detectors in X-ray polarimetry

    PixDD: a multi-pixel silicon drift detector for high-throughput spectral-timing studies

    Get PDF
    The Pixelated silicon Drift Detector (PixDD) is a two-dimensional multi-pixel X-ray sensor based on the technology of Silicon Drift Detectors, designed to solve the dead time and pile-up issues of photon-integrating imaging detectors. Read out by a two-dimensional self-triggering Application-Specific Integrated Circuit named RIGEL, to which the sensor is bump-bonded, it operates in the 0:5 — 15 keV energy range and is designed to achieve single-photon sensitivity and good spectroscopic capabilities even at room temperature or with mild cooling (< 150 eV resolution at 6 keV at 0 °C). The paper reports on the design and performance tests of the 128-pixel prototype of the fully integrated system

    The detector control unit of the fine guidance sensor instrument on-board the ARIEL mission: design status

    Get PDF
    ARIEL is an ESA mission whose scientific goal is to investigate exoplanetary atmospheres. The payload is composed by two instruments: AIRS (ARIEL IR Spectrometer) and FGS (Fine Guidance System). The FGS detection chain is composed by two HgCdTe detectors and by the cold Front End Electronics (SIDECAR), kept at cryogenic temperatures, interfacing with the F-DCU (FGS Detector Control Unit) boards that we will describe thoroughly in this paper. The F-DCU are situated in the warm side of the payload in a box called FCU (FGS Control Unit) and contribute to the FGS VIS/NIR imaging and NIR spectroscopy. The F-DCU performs several tasks: drives the detectors, processes science data and housekeeping telemetries, manages the commands exchange between the FGS/DPU (Data Processing Unit) and the SIDECARs and provides high quality voltages to the detectors. This paper reports the F-DCU status, describing its architecture, the operation and the activities, past and future necessary for its development

    Preliminary surface charging analysis of Ariel payload dielectrics in early transfer orbit and L2-relevant space environment

    Get PDF
    Ariel [1] is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. The operational orbit of the spacecraft is baselined as a large amplitude halo orbit around the Sun-Earth L2 Lagrangian point, as it offers the possibility of long uninterrupted observations in a fairly stable radiative and thermo-mechanical environment. A direct escape injection with a single passage through the Earth radiation belts and no eclipses is foreseen. The space environment around Earth and L2 presents significant design challenges to all spacecraft, including the effects of interactions with Sun radiation and charged particles owning to the surrounding plasma environment, potentially leading to dielectrics charging and unwanted electrostatic discharge (ESD) phenomena endangering the Payload operations and its data integrity. Here, we present some preliminary simulations and analyses about the Ariel Payload dielectrics and semiconductors charging along the transfer orbit from launch to L2 include

    FEA testing the pre-flight Ariel primary mirror

    Get PDF
    Ariel (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is an ESA M class mission aimed at the study of exoplanets. The satellite will orbit in the lagrangian point L2 and will survey a sample of 1000 exoplanets simultaneously in visible and infrared wavelengths. The challenging scientific goal of Ariel implies unprecedented engineering efforts to satisfy the severe requirements coming from the science in terms of accuracy. The most important specification – an all-Aluminum telescope – requires very accurate design of the primary mirror (M1), a novel, off-set paraboloid honeycomb mirror with ribs, edge, and reflective surface. To validate such a mirror, some tests were carried out on a prototype – namely Pathfinder Telescope Mirror (PTM) – built specifically for this purpose. These tests, carried out at the Centre Spatial de Liège in Belgium – revealed an unexpected deformation of the reflecting surface exceeding a peek-to-valley of 1µm. Consequently, the test had to be re-run, to identify systematic errors and correct the setting for future tests on the final prototype M1. To avoid the very expensive procedure of developing a new prototype and testing it both at room and cryogenic temperatures, it was decided to carry out some numerical simulations. These analyses allowed first to recognize and understand the reasoning behind the faults occurred during the testing phase, and later to apply the obtained knowledge to a new M1 design to set a defined guideline for future testing campaigns

    Calibration of the IXPE instrument

    Get PDF
    IXPE scientific payload comprises of three telescopes, each composed of a mirror and a photoelectric polarimeter based on the Gas Pixel Detector design. The three focal plane detectors, together with the unit which interfaces them to the spacecraft, are named IXPE Instrument and they will be built and calibrated in Italy; in this proceeding, we will present how IXPE Instrument will be calibrated, both on-ground and in-flight. The Instrument Calibration Equipment is being finalized at INAF-IAPS in Rome (Italy) to produce both polarized and unpolarized radiation, with a precise knowledge of direction, position, energy and polarization state of the incident beam. In flight, a set of four calibration sources based on radioactive material and mounted on a filter and calibration wheel will allow for the periodic calibration of all of the three IXPE focal plane detectors independently. A highly polarized source and an unpolarized one will be used to monitor the response to polarization; the remaining two will be used to calibrate the gain through the entire lifetime of the mission

    IXPE instrument integration, testing and verification

    Get PDF
    The Imaging X-ray Polarimetry Explorer (IXPE) is a scientific observatory with the purpose of expand observation space adding polarization property to the X-ray source's currently measured characteristics. The mission selected in the context of NASA Small Explorer (SMEX) is a collaboration between NASA and ASI that will provide to observatory the instrumentation of focal plane. IXPE instrument is composed by three photoelectric polarimeters based on the Gas Pixel Detector (GPD) design, integrated by INFN inside the detector unit (DU) that comprises of the electrical interfaces required to control and communicate with the GPD. The three DUs are interfaced with spacecraft through a detector service unit (DSU) that collect scientific and ancillary data and provides a basically data handling and interfaces to manage the three DUs. AIV has been planned to combine calibration of DUs and Instrument integration and verification activities. Due the tight schedule and the scientific and functional requirements to be verified, in IAPS/INAF have been assembled two equipment's that work in parallel. The flight model of each DU after the environmental tests campaign was calibrated on-ground using the Instrument Calibration Equipment (ICE) and subsequently integrated in the instrument in the AIV-T process on a AIV and Calibration Equipment (ACE), both the facilities managed by Electrical Ground Support Equipment (EGSE) that emulate the spacecraft interfaces of power supply, functional and thermal control and scientific data collection. AIV activities test functionalities and nominal/off-nominal orbits activities of IXPE instrument each time a calibrated DU is connected to DSU flight model completing step by step the full instrument. Here we describe the details of instrumentation and procedures adopted to make possible the full integration and test activities compatibly with calibration of IXPE Instrument
    corecore